Efficient protein targeting to the inner nuclear membrane requires Atlastin-dependent maintenance of ER topology
نویسندگان
چکیده
Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER.
منابع مشابه
Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain.
The biogenesis and maintenance of the endoplasmic reticulum (ER) requires membrane fusion. ER homotypic fusion is driven by the large GTPase atlastin. Domain analysis of atlastin shows that a conserved region of the C-terminal cytoplasmic tail is absolutely required for fusion activity. Atlastin in adjacent membranes must associate to bring the ER membranes into molecular contact. Drosophila at...
متن کاملDiffusion and retention are major determinants of protein targeting to the inner nuclear membrane
Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2β as model substr...
متن کاملSNAREs support atlastin-mediated homotypic ER fusion in Saccharomyces cerevisiae
Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were ...
متن کاملCooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network
In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only fo...
متن کاملSequences flanking the transmembrane segments facilitate mitochondrial localization and membrane fusion by mitofusin
Mitochondria constantly divide and fuse. Homotypic fusion of the outer mitochondrial membranes requires the mitofusin (MFN) proteins, a family of dynamin-like GTPases. MFNs are anchored in the membrane by transmembrane (TM) segments, exposing both the N-terminal GTPase domain and the C-terminal tail (CT) to the cytosol. This arrangement is very similar to that of the atlastin (ATL) GTPases, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017